University & National Lab CuTS®  Success Stories

TAI's custom and standard product heat straps are integral hardware in research programs at universities across nation, and we are now the preferred supplier of CuTS® to dozens of the Top Aerospace Engineering, Applied Physics and Mechanical Engineering Departments across the Globe.  If your experiment or program requires CuTS, we are happy to work with you and get  you the hardware you need; in most cases, for less than your typical $5,000-$10,000 procurement ceiling placed on your department. Visit our "CuTS® for National Lab & University Program," page to learn more!

Come back to this page every few months to see our latest CuTS University Success Stories!

The Majorana Demonstrator:

University of North Carolina

Marjorana demonstrator copper thermal straps

Neutrinos are fundamental particles that play key roles in the early universe, cosmology and astrophysics, and nuclear and particle physics.  Despite their abundant numbers generated by the sun, nuclear reactors, cosmic rays and in the big bang, they remain difficult subjects to study due to the weakness of their interactions.   In particular, the masses of the neutrinos remain unknown, and it is uncertain whether neutrinos are their own anti-particles.

The Majorana Collaboration is an international effort with over 100 participants from 18 institutions in five countries, which is currently constructing the Majorana Demonstrator, an experiment that seeks to observe neutrinoless double-beta decay (0νββ), a decay mode of an atomic nucleus in which two neutrons convert to two protons and two electrons. This process has not been observed, and it is not known whether it exists.  If this decay occurs, a fundamental symmetry of nature, lepton number, must be violated, the neutrino would be its own antiparticle, and the rate at which it occurs will be dependent upon the masses of the neutrinos.  Current experimental lower limits for the half-life of 0νββ are in excess of 1025 years.  This is an exceedingly long time, given that the universe is only 1010 years old!

The Majorana Demonstrator will Majorana collaboration copper thermal straps TAIsearch for neutrinoless double-beta decay using a cryogenic array of germanium crystals enriched in 76Ge, an isotope which has the potential to undergo neutrinoless double beta decay.  Germanium diodes are intrinsically pure detectors of radioactive decay, with excellent energy resolution.  To reach new half-life sensitivities, great measures must be taken to eliminate background events that would mask a potential signal.  Materials used in detector construction must be of the highest possible purity, to limit radiation from impurities.  The experiment will be housed inside of thick layers of copper and lead shielding, to eliminate penetrating radiation from external sources.  To reduce background events generated by cosmic rays, the experiment is located nearly a mile underground, in the Sanford Underground Research Facility (SURF) in Lead, SD.  The Majorana Demonstrator is supported by the United States Department of Energy, Office of Nuclear Physics and the National Science Foundation, Particle Astrophysics program.

In order for the Germanium detectors in the Majorana Demonstrator to operated with optimum performance, they must be operated at near liquid nitrogen temperatures: 80 - 100K, in a vacuum environment.  We are using copper thermal straps, designed and fabricated by Technology Applications Inc., as part of a cooling pathway between our array of Germanium detectors and a Pulse-Tube Cooler, which provides the cooling power. The straps performed perfectly, and there was no detectable degradtion of our vacuum performance using the OFHC Cu Braid under our vaccum conditions. We are very happy with the performance of the straps, the affordable price, and the high level of customer service and attention we received from their Marketing & Sales Department.

- Matt Green
  Postdoctoral Research Associate
  Majorana Collaboration
  University of North Carolina - Chapel Hill