Thermal Straps

THERMAL STRAPS 

Copper Cable | Copper Foil | Graphite Fiber | Graphene & PGS

JANIS Dual-Armed Cryocooler Copper Thermal Straps

 

Thermal straps (commonly referred to as "flexible thermal links," "heat straps," and "thermal braids,"), are heat transfer devices consisting of end fittings (brackets/terminals), and a flexible conductive material such as copper cable & foil, aluminum foil, and graphite sheets or fiber bundles.  They are a unique thermal management solution, offering a combination of conductive heat transfer, flexibility, and vibration attenuation, damping, and isolation.  This combination sets thermal straps apart from heat pipes, flexible vapor chambers, and all other passive or active cooling and vibration isolation systems.

Straps transfer heat between two or more locations and provide attenuation when movements from shock, vibration, mechanical function, and thermal expansion or contraction occur.  These can be related to events such as rocket launch, cryostat & cryocooler cool-down, and the day-to-day shock and vibration profiles associated with ground-based and airborne vehicle & equipment operation.  They can be paired with vibration isolation systems and heat pipes to provide additional attenuation, heat transfer, and mechanical decoupling.

Thermal_Straps_-_Performance_Price_and_Product_Options_While straps are sometimes an afterthought, they are critical components in numerous thermal management systems in aerospace, and cryogenic engineering, semiconductor, light source, synchrotron, and other engineering applications.  They play an important role in terrestrial systems, both in electrical component cooling at warmer operating temperatures and in cryogenic applications utilizing cryocoolers, dilution refrigerators, cold boxes, cryostats, and other cold laboratory equipment. 

For additional thermal link information, download our handout: Thermal Straps - Performance, Pricing, and Product Options, and be sure to request copies of our catalogs.

 

TAI's Thermal Strap Heritage

Thermal_Straps_

TAI's strap heritage spans three decades and began with our very own, Scott Willen, who developed the first Graphite Fiber Thermal Straps (GFTS®), in SBIR Ph I and II contracts with the USAF in 1996 (this research was later published in Cryocoolers 11).  GFTS® products gained popularity in 2011 - 2013, when several dozen assemblies, co-designed and manufactured by TAI Quality Manager, Trevor Sperry, were used to cool the phased antenna arrays and data acquisition systems on the ORION spacecraft, and compressors on JAXA's Astro-H satellite.  Since 2015, GFTS® have played vital roles in notable programs such as Boeing's CST-100 Starliner, NASA's IXPE, and GRACE-FO satellites, ESA's Solar Orbiter, DLR’s EnMAP, and several other spaceflight missions (in addition to ground-based applications in the medical and cryogenic engineering industries).

Our Copper Thermal Strap (CuTS®) heritage began in 2004, with our first-generation solderless copper braided straps (offered until 2014).  TAI was the first and only supplier to offer a standard product line and catalogs, both created by our Director of Business Development, Tyler Link, in 2013.  Two years later, our experts developed OFHC UltraFlex cabling, optimized end fitting design, and improved swage & final machining methods, all of which revolutionized our copper thermal strap product line.  In 2017, this new generation of straps was studied by Fermi Lab and other universities and national laboratories (research was later published in volume 86 of the Journal Cryogenics, and co-authored by TAI's Tyler Link and Jamie Deal).  

Work with Pyrolytic Graphite Sheet-based straps began in 2013, culminating in the X-Series® Strap; the world's first and only graphite and graphene sheet thermal strap standard product line (developed by TAI’s Tyler Link, Dave Dyke, and Trevor Sperry).  X-Series® PGS-based thermal straps (PGL™) were then space-qualified by NASA JPL in 2018 and advanced to TRL 7 with spaceflight qualification testing performed by Airbus and the DLR. PGL™ now plays vital roles in spaceflight programs with Lockheed Martin, Airbus, the DLR, and CNES (and like GFTS®, are also being used for ground-based applications in the medical and cryogenic engineering/cold laboratory instrument industries).  

Measuring Thermal Strap Conductivity 

Beyond heritage and qualification history, a critical factor when selecting a thermal strap supplier and product is understanding how the thermal conductivity of a strap assembly is measured, and thus, if the manufacturing process results in consistent quality and performance.  TAI has been at the forefront of thermal strap qualification and thermal conductivity testing for nearly 25 years, and our conductance test and projection processes are highly-accurate. The following exerpt is from our standard work instruction procedures, and provides valuable insight into the test and calculation processes.

 

Thermal Strap Conductance Test Setup

Measurement Basic Practices and Definitions

The basic premise of measuring the thermal conductance of a thermal strap is to apply a measurable amount of heater power (Qhtr) to one end of the thermal strap while securing the other end to a heat sink. The temperatures of the heat source and sink blocks are then measured just under the interfaces of the strap’s end fittings

Given that external heat leak paths to and from the strap under test are minimized and predictable, the thermal conductance of the strap can be calculated as:

Cstrap = Qstrap/ΔTstrap 

TAI uses a thermal interface material (TIM) (HITHERM™ HT-1205) in order to minimize the thermal resistance at the interface between the strap’s end fittings and the source and sink blocks. This is done because we cannot always control or replicate the exact attachment method and interface used in the specific application and because we are mainly interested in the thermal conductance of the strap itself.

Thermal Strap Conductance Test Setup Diagram 2As shown in Figure 1 and Figure 2, the temperature sensors are embedded in the heat source and heat sink blocks. This puts the temperature measurements directly within the heat flow path. The effects of the blocks, temperature sensor locations, and the bolted interfaces can be determined and removed from the reported strap thermal conductance once the data is reduced.

This measurement technique is important because temperature probes attached to the exterior of the end fittings do not result in accurate measurements. Externally mounted temperature sensors result in measurements that are outside of the heat flow path.

To learn more about our standard thermal conductivity test procedures, contact TAI today.  Our experts have standard work instruction packages for all of our strap qualification procedures.

 

  Which Thermal Strap is Best for My Application? 

With multiple products to choose from, it is essential to understand which material and configuration may make the most sense for your program, in light of the performance requirements, and the environmental/operational conditions.  The table below outlines some of the most common applications, their operating temperatures, and the commonly used strap types:

Thermal Strap Applications and Operating Temp
 

Though the application and operating temperature are important, there are several additional factors to consider when identifying the ideal thermal strap material and configuration.  Your program will likely also need to identify and weigh the following when determining the optimal strap in each situation:

 
•MASS LIMITATIONS •VIBRATION TRANSMISSION
•VOLUME RESTRICTIONS •OPERATIONAL ENVIRONMENT
•THERMAL CONDUCTANCE •FINANCIAL COSTS/BUDGET
•CTE/MATERIAL MISMATCH •STIFFNESS REQUIREMENTS
•RANGE OF MOTION •SPACEFLIGHT HERITAGE
MECHANICAL FLEXIBILITY •CLEANLINESS REQUIREMENTS
LOAD BEARING REQUIREMENTS •LIFE CYCLE BENDING / FLEXING


At TAI, our experts are here to help identify, design, and manufacture the ideal thermal solution for your program, based on all of these factors.

 

Material Thermal Conductivity

Thermal Strap/Link Conductance Graph
 

Metallic Thermal Straps

Thermal Straps made from copper braid or rope, and copper or aluminum foil have been used for decades.  They offer durability, and are ideal for use at nearly any operating temperature; from the mK range (when used to cool dilution refrigeration systems), to well over 800K (to cool components near rocket engines).  Durable, effective, and affordable (in most configurations), metallic thermal straps are often the best, and most economical choice for terrestrial applications.
 
To learn more about each of the metallic thermal strap types, use the drop-downs below:
Copper Rope / Cabling Thermal Straps (CuTS®)

Thermal Straps

Copper rope/cabling straps are either soldered, brazed, welded, or made via a swage ("cold press") process.  However, a cold press, heat-free assembly method is the most efficient and preserves the flexibility of the conductive materials used in a thermal strap.  Soldering or welding copper straps can lead to 5-10x greater thermal contact resistance; significantly reducing thermal performance.  Further, when heat is used to assemble straps, copper cables and foils will stiffen significantly, increasing the risk of vibration transmission and damage to sensitive equipment.

When considering flexibility, durability, and performance, a copper cabled strap is the preferred, and most frequently used, in all industries and applications. They are the most durable of all heat strap products available, and are the ideal choice for cryogenic applications.  CuTS® offer flexibility on all axes, and can handle exponentially greater loads and life cycle flexing than any other strap or material type. 

 
Limitations:
  • Mass: Copper has a higher density than other conductive strap materials, and in extremely mass-sensitive applications, a graphite strap may be your best option. It is important to note that while aluminum is less dense than copper, aluminum straps are not always an ideal alternative (when mass is a concern). Aluminum offers a fraction of the conductivity of copper, and stacked foil straps must be designed into longer (and thicker), S and U-shaped installation configurations, in order to provide flexibility on 2 of 3 axes, and match the thermal performance of a copper cabled thermal strap.

  • Copper rope straps—even those made by TAI—can be stiff if multiple rows are incorporated into the design AND the cable length is less than 1.0 inch.  At these shorter lengths, cables continue to offer superior flexibility over stacked metallic foils, but the increased stiffness of the assembly is noticeable.

  • Cross-sectional area: a cable (or braid), by its very nature, is not as densely-packaged as a stack of metallic sheets. As a result, cabled straps may not meet your thermal conductance requirement in certain volume-restricted applications.

Copper & Aluminum Foil Thermal Straps (CuFS®, AlTS)

Copper Foil Thermal Strap CuFSVolume-restricted applications (requiring high thermal performance), may benefit from a stacked metallic foil configuration. However, there are a number of trade offs to consider:

 

Limitations:

  • Stiffness: all metallic foil thermal straps are stiffer (and on each axis), than equivalent copper cabled configurations. As a result, foil straps are designed in "S" and "U" shapes, in order to provide flexibility on the compression and lateral axes. However, this increases the length of the strap, which negates the benefits of using foils to begin with.  In fact, most engineers are able to substitute a much shorter copper rope or graphite fiber or sheet strap when considering a foil configuration.  This results in reduced or equivalent mass, while offering equivalent—or improved—performance. Additionally, replacing a foil strap with a copper cabled configuration significantly reduces the price.

  • Many conventional assembly methods (brazing/soldering/welding), dramatically increase stiffness.

  • Foil straps typically cost 2-5x more than copper cabled thermal straps. Not only are the materials more expensive, but the assembly process is more complex and involves additional steps (thus, the higher price).

In many cases, foil straps are not the ideal solution. However, there are specific applications and environments in which they may offer benefits over a graphite or copper rope strap. 

Graphite & Graphene Thermal Straps

Graphite Thermal Straps 

There are multiple carbon-based strap solutions to consider in the industry.  Though graphite straps were initially used only for spaceflight applications operating between 230 - 400K, graphite and graphene offer unique benefits under nearly any operational or environmental conditions and are now being incorporated into terrestrial and spaceflight cryogenic applications.  Straps are either made using graphite fiber-based materials, or pyrolytic graphite and graphene foils and films (sheets). Each option offers a combination of mechanical, thermal performance, and financial costs to consider (and graphite fiber, sheet, and graphene foil are not to be confused with rigid Annealed Pyrolytic Graphite material, which is often used for structural components). 

To learn more about carbon-based thermal strap types, use the drop-downs below:

Graphite Fiber Thermal Straps (GFTS®)

Graphite Thermal StrapsGraphite Fiber Thermal Straps are made with GraFlex, a bundled "toe" or rope of fibers with a material thermal conductivity of 810 W/(m-K).  Fiber-based straps are more durable and lighter than carbon film/foil straps, and they offer lateral flexibility and deflection without needing to be installed in S-shaped configurations. The most notable attributes of graphite fiber straps is their high conductance to low mass ratio, and their unparalleled ability to attenuate and absorb vibration. The average GFTS® assembly is lighter than an equivalent carbon sheet strap, and just 1/5 - 1/10 the mass of a comparable copper rope strap.

 

Limitations:

  • GFTS® productswhile more robust than graphite and graphene sheet/foil strapsare delicate, and more fragile than metallic straps.

  • Fiber-based strap assemblies provide a fraction of the performance of their foil/film-based counterparts.

  • GFTS® assemblies, like metallic foil straps, need to be designed and assembled into their installed configuration/shape, and do not offer an extensive range of motion on all axes (like a copper cabled strap).

  • While they offer flexibility on the lateral axis GFTS® assemblies are best-suited to applications requiring less than 1.0" deflection on each axis, and are stiffer on the vertical and compression axes than a PGS-based strap.

 

PGS & Graphene Thermal Straps (PGL™ & GTL™)

Graphene Thermal StrapPyrolytic Graphite and Graphene sheet/foil/film straps offer the highest thermal performance of any of the strap products (above ~80K), ranging from 1,600 W/(m-K) - 1,840 W/(m-K).  Their compact profiles make them ideal for volume-restricted applications. Though PGS and graphene straps are more fragile than metallic and fiber-based straps, they offer a unique combination of flexibility, low mass, and thermal performance.

 Pyrolytic Graphite Thermal Links offer the highest thermal performance of any carbon-based strap at cryogenic operating temperatures (with performance peaking at 150K).  They are an effective replacement for aluminum foil straps down to operating temperatures as low as 65K (and provide equivalent performanceat a lower massto OFHC copper thermal straps between 70 and 80K). Our Graphene Thermal Links offer the highest thermal performance at operating temperatures from 200K - 350K, though graphene is not as flexible as  pyrolytic graphite sheet. 


 Limitations:

  • All stacked pyrolytic graphite and graphene foils/sheets/films are fragile. These can be damaged if flexed on the lateral axis if improperly handled or used. 

  • Carbon-based straps are not ideal at operating temperatures below ~60K, unless the goal is to use them as a flexible thermal switch.

  • Graphite/Graphene Sheet/Foil straps are expensive. Graphite Fiber Strap products now sell for the same price as competing metallic foil straps, whereas carbon sheet-based products have somewhat higher material and assembly costs.

Affordable, High Quality Thermal Strap Solutions

Why do we offer several strap options? Because no single product is ideal under all environmental and operational conditions. Each strap type offers a unique combination of thermal performance, flexibility, durability, vibration attenuation/damping, and mass, which customers must consider. Most importantly: while some materials may be ideal for your application, your budget may dictate which strap you ultimately choose. 

To learn more about our product offerings, download a catalog today, call or email us, or complete a Strap Questionnaire to get your inquiry started. Remember: all front end (pre-purchase order) design work is always free of charge, and our engineers and strap experts are here to assist you at every step along the way!

 
Download Our Thermal Strap Catalogs Today!
 

2020 X-Series Thermal Strap Catalog_Thermal_Straps

2020_Copper_Thermal_Strap_Catalog_TAI

2019-GFTS-Catalog

 

Testing Services

TAI provides on-site testing and analysis services here at our Boulder, CO facility (though we partner with an internationally renowned test facility for shock and vibe testing). From stiffness to thermal conductance, thermal cycling, shock & vibe, tensile strength measurements, and more, we have you covered! 

 

Free Thermal Strap Analysis Packages

TAI offers complimentary thermal assessments, providing mass and performance projections, schedule and pricing ROM's, and (when possible/if viable), Preliminary Trade Analysis of alternative aluminum and copper straps.

Cryogenic Society of America Corporate Sustaining Member logo

Back to top